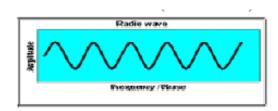


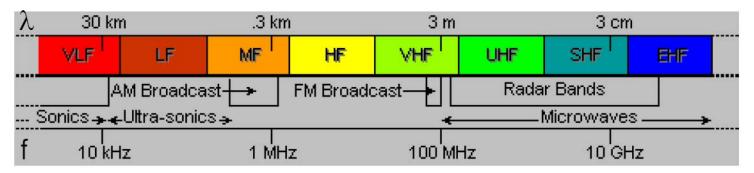
Reti Radiomobili

Prof. Antonio Capone

2 – Concetti preliminari

Canale Wireless


Canale wireless


- ✓ per questo argomento usa come riferimento testo di H. Walke: "Mobile Radio Networks", cap. 2. par. 1
- Rispetto ai mezzi cablati il canale radio è un mezzo di trasmissione molto "cattivo" (forti attenuazioni, caratteristiche variabili, distorsione, ecc.)
- I segnali che si propagano in aria sono soggetti a fenomeni di:
 - Attenuazione funzione della distanza tra trasmettitore e ricevitore
 - Attenuazione dovuta ad ostacoli
 - Propagazione per cammini multipli (multipath)

- Onda radio
 - Lunghezza d'onda $\lambda = \frac{c}{f}$
 - Velocità della luce $c = 3.10^8$ m/s
 - Frequenza f

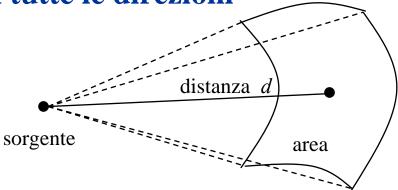
$$s(t) = \cos(2\pi f t + \varphi)$$

[V|U|S|E]HF = [Very|Ultra|Super|Extra] High Frequency

ELF	<3 KHz	Remote control, Voice, analog phone
VLF	3-30 KHz	Submarine, long-range
LF	30-300 KHz	Long-range, marine beacon
MF	300 KHz –3 MHz	AM radio, marine radio
HF	3-30 MHz	Amateur radio, military, long-distance aircraft/ships
VHF	30-300 MHZ	TV VHF, FM radio, AM x aircraft commun.
UHF	300 MHz - 3 GHz	Cellular, TV UHF, radar
SHF	3-30 GHz	Satellite, radar, terrestrial wireless links, WLL
EHF	30-300 GHz	Experimental, WLL
IR	300 GHz – 400 THz	LAN infrared, consumer electronics
Light	400-900 THz	Optical communications

- Reti radiomobili
 - 900-2200 MHz (VHF-UHF)
 - Antenne semplici e piccole (pochi cm)
 - Con potenze intorno ad 1W possono coprire area di qualche chilometro e penetrare alcuni muri degli edifici
- Ponti radio e collegamenti satellitari
 - 3-30 GHz (SHF)
 - Tanta banda disponibile
- Reti wireless dati (WLAN, WPAN, ecc.)
 - 2.4 GHz e 5GHz (ISM band)
 - Interferenza da altri sistemi (forni a micronde, telecomandi, ecc.)
 - Nei 5 Ghz attenuazioni da pioggia, nebbia, ecc.

Alte frequenze


- Maggiore disponibilità di banda
- Spettro meno affollato di sistemi
- Scarsa capacità di attraversamento di ostacoli

Basse frequenze

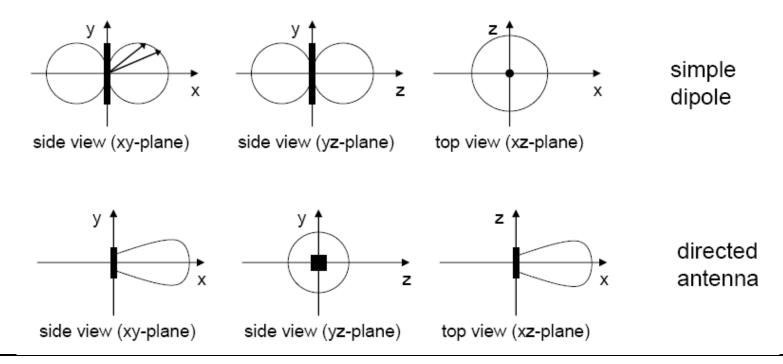
- Poca disponibilità di banda
- Antenne grandi
- Molte sorgenti di interfenza di altre attività umane

- Le antenne sono conduttori o sistemi di conduttori in grado di:
 - In trasmissione: irradiare energia elettromagnetica nello spazio
 - In ricezione: catturare energia elettromagnetica dallo spazio
- Nei sistemi di comunicazione bidirezionali la stessa antenna può essere usata sia per la trasmissione che per la ricezione

• Una sorgente puntiforme (isotropic radiator) che trasmetta un segnale di potenza P_T lo irradia in modo uniforme in tutte le direzioni

 La densità di potenza sulla superficie di una sfera centrata nella sorgente puntiforme e con raggio d è data da:

$$F(d) = \frac{P_T}{4\pi d^2} \quad [\text{W/m}^2]$$


- In molti casi vengono adottare antenne che concentrano la potenza irradiata principalmente in alcune direzioni
- Questa caratteristica è espressa mediante il guadagno d'antenna $g(\theta)$ nella direzione θ

$$g(\theta) = \frac{P(\theta)4\pi}{P_T}$$

- dove P_T rappresenta la potenza trasmessa e $P(\theta)$ rappresenta la densità di potenza in direzione θ ad una distanza di riferimento d=1
- Normalmente si assume che il guadagno massimo sia nella direzione principale (lobo principale dell'antenna) corrispondente a θ =0.

- Guadagno d'antenna: rapporto tra la densità di potenza nella direzione di massima radiazione e densità di potenza di un radiatore isotropico ad una distanza di riferimento (normalmente in dBi – decibel over isotropic)
- Direttività d'antenna: rapporto tra la densità di potenza nella direzione di massima radiazione e densità di potenza media ad una distanza di riferimento
- Per il calcolo del guadagno si calcola la densità del radiatore isotropico come $\frac{P_T}{4\pi d^2}$
- Mentre per la direttività si considera la densità di potenza media escludendo dunque le perdite

- Antenne direttive:
 - Migliorano la potenza ricevuta
 - Riducono l'interferenza da altre sorgenti
 - Sono più complesse e richiedono puntamento
- **Esempi di diagrammi di radiazione** $g(\theta)$:

Potenza ricevuta

Indicando con g_T il guadagno d'antenna abbiamo che la densità di potenza in tale direzione risulta:

$$F(d) = \frac{P_T g_T}{4\pi d^2} \quad [\text{W/m}^2]$$

Il prodotto P_Tg_T è chiamato EIRP (Effective Isotropically Radiated Power) e rappresenta la potenza necessaria con una sorgente isotropica per raggiungere la stessa densità di una antenna direttiva

Potenza ricevuta

- La potenza catturata dall'antenna in ricezione dipende dalla densità di potenza incidente e dall'area effettiva A_e dell'antenna
- Nel caso del radiatore isotropico si ha:

$$P_R = F(d)A_e A_e = \frac{\lambda^2}{4\pi}$$

La capacità di concentrare l'energia di un'antenna direttiva si traduce in una maggiore capacità di cattura della potenza incidente in misura pari al guadagno d'antenna:

$$P_{R} = F(d)g_{R}A_{e}$$

Potenza ricevuta

 La potenza al ricevitore può dunque essere espressa come:

$$P_{R} = P_{T}g_{T}g_{R}\left(\frac{\lambda}{4\pi d}\right)^{2}$$

- dove P_T rappresenta la potenza irradiata dal trasmettitore (potenza applicata ai morsetti), g_T e g_R i guadagni delle antenne del trasmettitore e ricevitore, λ la lunghezza d'onda e d la distanza tra trasmettitore e ricevitore
- Nell'ipotesi che $g(\theta)$ sia uniforme nell'angolo "di apertura" dell'antenna (lobo principale) tale formula può essere usata nei sistemi radiomobili dove non sempre trasmettitore e ricevitore sono allineati nella direzione di massima radiazione

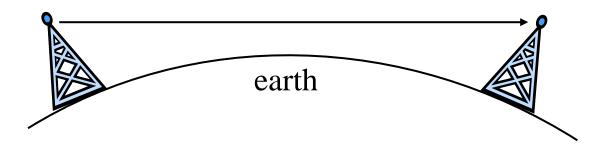
Modello in spazio libero (Friis)

Riassumendo:

$$P_{R} = P_{T}g_{T}g_{R}\left(\frac{\lambda}{4\pi d}\right)^{2} = P_{T}g_{T}g_{R}\left(\frac{c}{4\pi f d}\right)^{2}$$

- P_T potenza trasmessa (W o mW)
 - d distanza (m) P_Tg_T EIRP
- \blacksquare P_R potenza ricevuta (W o mW)
- \mathbf{g}_T guadagno antenna tx
- g_R guadagno antenna rx
- $\lambda = c/f$ lunghezza d'onda (m)

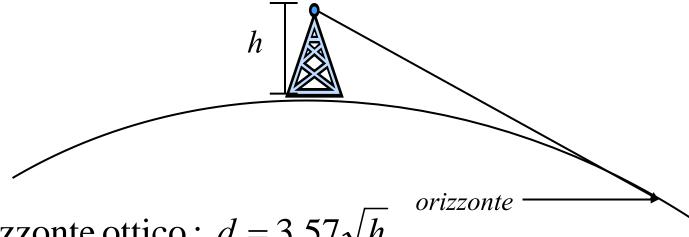
Modello in spazio libero (Friis)


La

$$L = \left(\frac{\lambda}{4\pi d}\right)^{-2}$$

- rappresenta <u>l'attenuazione da spazio libero</u>.
- La formula ricavata è valida nella propagazione in spazio libero, senza ostacoli o riflessioni che alterano la propagazione del segnale

Line-of-sight


 Uno dei casi pratici in cui è valida la formula in spazio libero è quella della propagazione in visibilità diretta (line-of-sight)

- Comunicazioni via satellite (oltre 30 MHz altrimenti riflessione nella ionosfera)
- Comunicazioni terrestri con antenne direttive all'interno dell'orizzonte radio

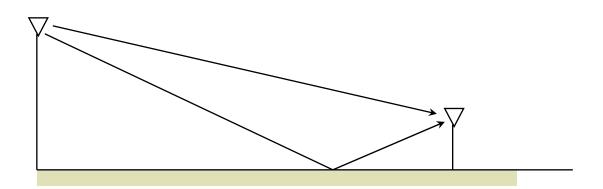
Line-of-sight

Orizzonte radio diverso dall'orizzonte ottico a causa dell'effetto di deviazione delle onde elettromagnetiche causato dalla rifrazione nella bassa atmosfera

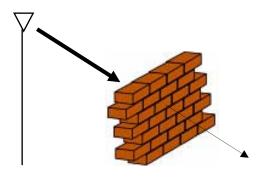
orizzonte ottico : $d = 3.57\sqrt{h}$

orizzonte radio :
$$d = 3.57\sqrt{K \cdot h}$$
 $K \approx 4/3$

$$d = 3.57 \left(\sqrt{K \cdot h_T} + \sqrt{K \cdot h_R} \right)$$

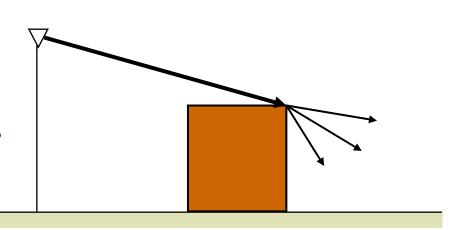

d[Km], h[m]

Effetti sulla propagazione

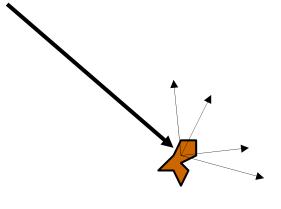

- L'attenuazione da spazio libero non è l'unica che subisce il segnale
- Anche altre attenuazioni possono essere presenti a causa dell'atmosfera (dipendente dalla frequenza e da nebbia, pioggia, ecc.) e di ostacoli
- Inoltre la propagazione in prossimità della superficie terrestre ha caratteristiche diverse da quelle in spazio libero ...

Effetti sulla propagazione

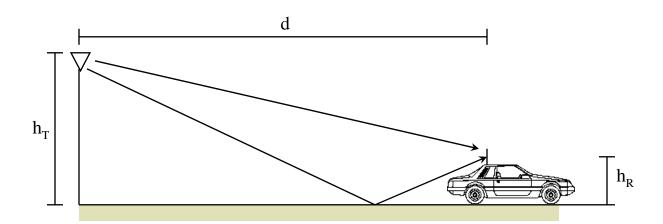
Riflessioni

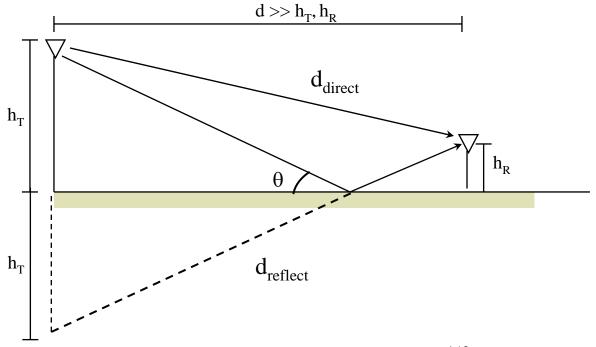

Ombreggiamento (shadowing)

Effetti sulla propagazione


Diffrazione

Quando l'onda incontra un bordo netto di un ostacolo, il bordo si comporta come un emettitore lineare




Scattering

Quando l'onda incontra un oggetto piccolo rispetto alla lunghezza d'onda, l'oggetto si comporta come un emettitore puntiforme

- Se a causa di riflessioni, diffrazioni e scattering più segnali arrivano al ricevitore questi si combinano vettorialmente
- Nel caso <u>propagazione con due raggi</u>, uno diretto ed uno riflesso completamente è possibile calcolare l'attenuazione del segnale ricevuto

$$d_{\text{direct}} = \sqrt{d^2 + (h_T - h_R)^2} = d \left[1 + \left(\frac{h_T - h_R}{d} \right)^2 \right]^{1/2} \approx d \left[1 + \frac{1}{2} \left(\frac{h_T - h_R}{d} \right)^2 \right]$$

$$d_{\text{reflect}} = \sqrt{d^2 + (h_T + h_R)^2} = d \left[1 + \left(\frac{h_T + h_R}{d} \right)^2 \right]^{1/2} \approx d \left[1 + \frac{1}{2} \left(\frac{h_T + h_R}{d} \right)^2 \right]$$

$$d_{\text{reflect}} - d_{\text{direct}} \approx d \left[1 + \frac{1}{2} \left(\frac{h_T + h_R}{d} \right)^2 \right] - d \left[1 + \frac{1}{2} \left(\frac{h_T - h_R}{d} \right)^2 \right] = 2 \frac{h_T h_R}{d}$$

 I segnali viaggiano per distanze diverse e quindi con fasi diverse:

raggio diretto:
$$A \cos \left[2\pi f \left(t - \frac{d_{\text{direct}}}{c} \right) \right]$$

raggio riflesso:
$$B \cos \left[2\pi f \left(t - \frac{d_{\text{reflect}}}{c} \right) \right]$$

- **Differenza di fase:** $\Delta \varphi = 2\pi f \frac{\Delta d}{c} = 4\pi \frac{h_T h_R}{\lambda d}$
- Indicando con E_{direct} l'ampiezza del segnale diretto e con E quello del segnale composto, si ha: $E = E_{direct} \left[1 + \rho e^{-j\Delta \varphi} \right]$
- **Assumendo riflessione ideale** (ρ =-1):

$$\begin{split} E &= E_{\rm direct} \left[1 - e^{-j\Delta \varphi} \right] = E_{\rm direct} \left[1 - \cos(\Delta \varphi) + j \sin(\Delta \varphi) \right] \\ &|E| = \left| E_{\rm direct} \right| \left[1 + \cos^2(\Delta \varphi) - 2\cos(\Delta \varphi) + \sin^2(\Delta \varphi) \right]^{1/2} = \\ &= 2 |E_{\rm direct}| \sqrt{\frac{1 - \cos(\Delta \varphi)}{2}} = 2 |E_{\rm direct}| \sin\frac{\Delta \varphi}{2} \end{split}$$

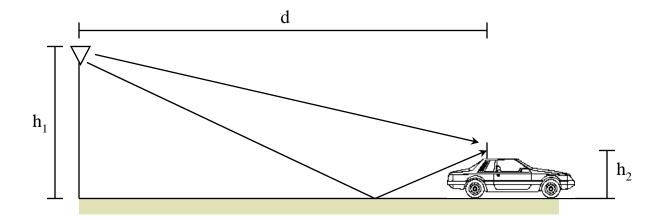
La potenza ricevuta:

$$P_R \propto |E|^2 = 4|E_{\text{direct}}|^2 \sin^2 \frac{\Delta \varphi}{2}$$

E dunque:

$$P_R(d) = 4P_T g_T g_R \left(\frac{\lambda}{4\pi d}\right)^2 \sin^2\left(\frac{2\pi h_T h_R}{\lambda d}\right)$$

Tipicamente:


Sipicamente:
$$\sin^2 \left(\frac{2\pi h_T h_R}{\lambda d} \right) \approx \left(\frac{2\pi h_T h_R}{\lambda d} \right)^2$$
se $\frac{2\pi h_T h_R}{\lambda d}$ è piccolo

Quindi:

$$P_R(d) \approx 4P_T g_T g_R \left(\frac{\lambda}{4\pi d}\right)^2 \left(\frac{2\pi h_T h_R}{\lambda d}\right)^2 = P_T g_T g_R \frac{h_T^2 h_R^2}{d^4}$$

• Nel modello a due raggi risulta dunque: $P_R(d) \propto d^{-4}$

Riassumendo:

 il rapporto tra potenza ricevuta e potenza trasmessa assume la forma:

$$\frac{P_R}{P_T} = g_R g_T \left(\frac{h_1 h_2}{d^2}\right)^2$$

Attenuazione da distanza

- Nell'ipotesi della propagazione per due raggi la potenza ricevuta decresce, a causa dell'attenuazione dovuta alla distanza, molto più velocemente ($\sim 1/d^4$) che nel caso di propagazione in spazio libero ($\sim 1/d^2$)
- In realtà la propagazione tipica dei sistemi wireless è spesso diversa e più complessa di questi due casi
- Nonostante ciò di solito si utilizza una formula simile anche nel caso generale dove però l'esponente di della distanza (coefficiente di propagazione η) può assumere valori compresi tra 2 (spazio libero) e 5 (forte attenuazione ambiente urbano):

$$P_R = P_T g_T g_R \left(\frac{\lambda}{4\pi}\right)^2 \frac{1}{d^{\eta}}$$

- Esistono tecniche molto sofisticate per la stima della potenza ricevuta che si basano sulla conoscenza dettagliata delle caratteristiche dell'area dove il segnale si propaga (ray tracing techniques); queste tecniche sono però molto onerose in termini di complessità computazionale
- Spesso si fa dunque ricorso a <u>modelli empirici</u> che calcolano la attenuazione da distanza con formule approssimate

Scenari di riferimento considerati

- Area urbana (grandi-medie-piccole città), area rurale
- Modelli generati combinando modelli elementari di base (LOS, raggio riflesso, ecc.)
- Basati su grandi quantità di dati da misure empiriche

Parametri considerati

• Frequenza, altezza delle antenne, distanza, ecc.

Fattori di correzione

Montagne, specchi d'acqua, strade, ecc.

Primo modello:

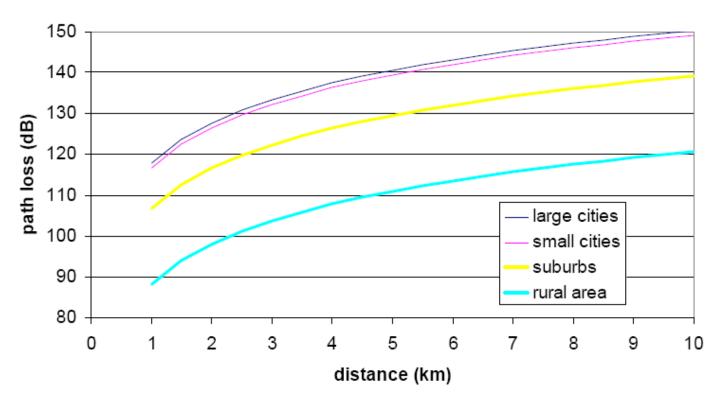
 Hata (1968) molto complesso con molti parametri e fattori di correzione

- Il più noto modelle per l'attenuazione da distanza è quello di di Okumura-Hata (1980)
- Fornisce formule per l'attenuazione in diversi scenari di riferimento
 - Grandi città; città medio-piccole; Aree rurali
 - Per distanze > 1 km

Okumura-Hata: urban area

$$L_P = 69.55 + 26.16\log f - 13.82\log h_T - a(h_R) + (44.9 - 6.55\log h_T)\log d \text{ [dB]}$$

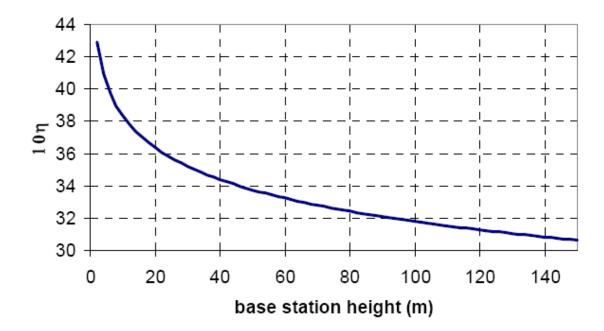
- dove
 - *f* è la frequenza in MHz (valida da 150 a 1500 MHz)
 - h_T è l'altezza della stazione base (in m)
 - h_R è l'altezza della stazione mobile (in m) $a(h_R)$ fattore di correzione dipendente dal profilo dell'area
 - d è la distanza (in km)
- Grandi città: $a(h_R) = 3.2[\log_{10}(11.75 \cdot h_R)]^2 4.97$
- Città medio-piccole:


$$a(h_R) = [1.1\log_{10} f - 0.7]h_R - [1.56\log_{10} f - 0.8]$$

- Okumura-Hata: sub-urban & rural areas
- Calcolato a partire da quello per aree urbane (L_p)

• Sub-urban:
$$L_{path} = L_P - 2 \left[\log_{10} \frac{f}{28} \right]^2 - 5.4$$

Rural:
$$L_{path} = L_P - 4.78 [\log_{10} f]^2 + 18.33 \log_{10} f - 40.94$$


Okumura-Hata: esempio numerico

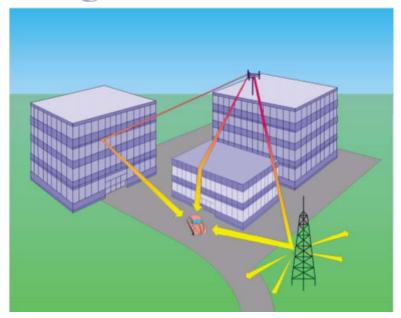
$$F=900MHz, h_{bs}=80m, h_{ms}=3m$$

Modelli empirici

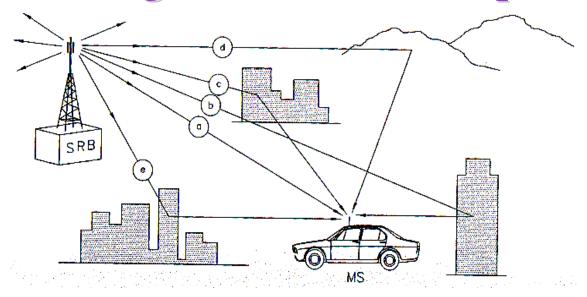
- Okumura-Hata: fattore di propagazione η
 - Il fattore di propagazione dipende solo dall'altezza della stazione radio base: $(44.9 6.55 \log h_T) \log d \Rightarrow$ $(44.9 6.55 \log h_T) = 10\eta$

Modelli empirici

Altri modelli empirici

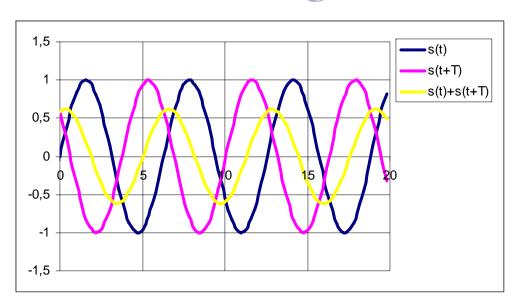

- Modello di Lee
 - Banda intorno 900 MHz
 - Distanze > 1 km
 - Più complesso del modello di Okumura-Hata

Modello di Walfish-Ikegami

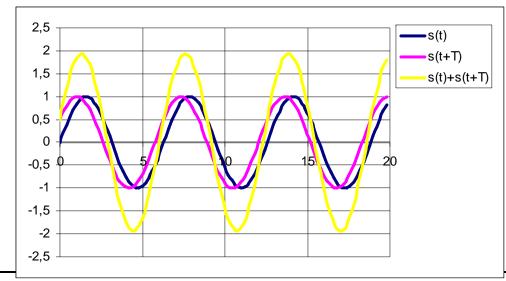

- Frequenze 800-2000 MHz
- Valido anche per piccole distanze 20 m − 5 km
- Modello di riferimento per sistemi 3G

Modelli indoor

- Numerosi modelli
- Includono attenuazioni aggiuntive per la penetrazione dei muri
- Basati su zone (grandi spazi, spazi medi, spazi piccoli)

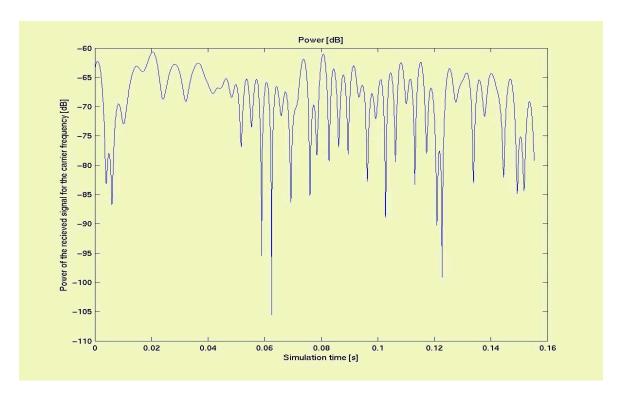


- Nella propagazione tra sorgente e destinazione il segnale può seguire più percorsi a causa della riflessione totale o parziale da parte di ostacoli
- Il comportamento delle onde sugli oggetti dipende dalla frequenza del segnale e dalla caratteristiche e dimensioni degli oggetti
- In generale, onde a bassa frequenza possono attraversare senza attenuazione molti oggetti (che risultano trasparenti), mentre all'aumentare della frequenza i segnali tendono ad essere assorbiti o riflessi dagli ostacoli (ad altissima frequenza oltre 5 GHz è possibile quasi solo la propagazione diretta).


- Le repliche del segnale che giungono dai diversi cammini si ricombinano al ricevitore
- Il risultato della ricombinazione dipende:
 - numero delle repliche (N)
 - fasi relative (φ_k)
 - ampiezze (a_k)
 - frequenza (f_0)

$$e_R(t) = \sum_{k=1}^{N} a_k \cos(2\pi f_0 t + \varphi_k)$$

 Il segnale risultante può essere attenuato


$$T=4/5\pi$$

o amplificato

$$T=\pi/6$$

 Se il terminale si muove le caratteristiche della ricombinazione variano nel tempo

 I buchi di fading tendono ad essere distanziati di circa il tempo necessario a percorrere metà della lunghezza d'onda

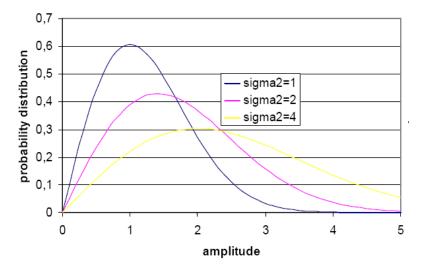
 In alcuni scenari semplificati è possibile dare una rappresentazione statistica dell'attenuazione dovuta al fading da multipath

$$\begin{split} e_{R}(t) &= \sum_{k=1}^{N} a_{k} \cos(2\pi f_{0}t + \varphi_{k}) = \\ &= \cos(2\pi f_{0}t) \sum_{k=1}^{N} a_{k} \cos\varphi_{k} - \sin(2\pi f_{0}t) \sum_{k=1}^{N} a_{k} \sin\varphi_{k} = \\ &= X \cos(2\pi f_{0}t) - Y \sin(2\pi f_{0}t) \end{split}$$

- Fading di Rayleigh
 - Se si assume
 - un numero infinito di cammini incidenti
 - nessuna componente dominante (a_k comparabili) [di solito verificate quando ci sono solo cammini riflessi]
 - fasi casuali uniformi in $[0,2\pi]$
 - Si può derivare che le componenti X e Y del segnale lungo gli assi sono due variabili Gaussiane indipendenti

$$f_X(x) = f_Y(x) \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

L'ampiezza del vettore $R = \sqrt{X^2 + Y^2}$

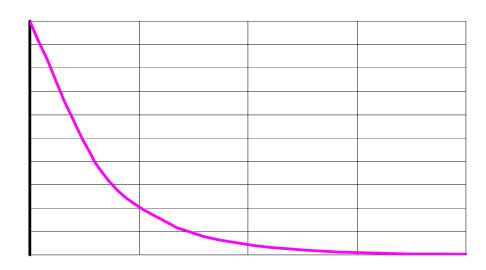

con componenti gaussiane indipendenti ha una

distribuzione di Rayleigh:

$$f_R(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}, \quad x \ge 0$$

$$\lim_{\substack{\text{toping this principal sign on a sign of a sign of a sign on a sign of a sign of$$

con $E_R(x) = \sigma \sqrt{\frac{\pi}{2}},$


$$E_R(x^2) = 2\sigma^2, \qquad \sigma_R^2 = \sigma^2 \left(\frac{4-\pi}{2}\right).$$

di solito si assume una distribuzione normalizzata con

$$E_{R}(x^{2})=1$$

 La potenza P di una segnale che subisce fading di Rayleigh ha una distribuzione esponenziale negativa

$$f_P(x) = \frac{1}{2\sigma^2} e^{-x/2\sigma^2}, \quad F_P(x) = 1 - e^{-x/2\sigma^2}$$

• Potenza media: $2\sigma^2$

- Probabilità di fuori servizio (outage)
 - Probabilità che la potenza del segnale ricevuto sia inferiore ad una soglia
 - Potenza media P_0
 - Soglia γ

$$F_P(\gamma) = 1 - e^{-\gamma/P_0}$$

Esempio 1:

Potenza media = $100 \mu W$ Soglia = $5 \mu W$ Outage prob. = 4.9%

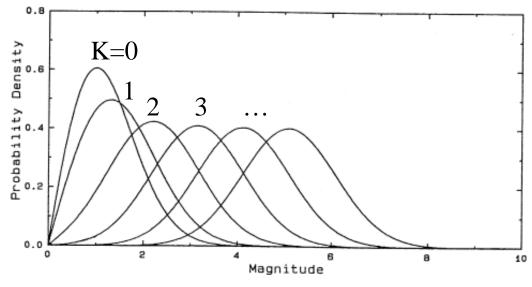
Esempio 2:

Potenza media = -75 dBm

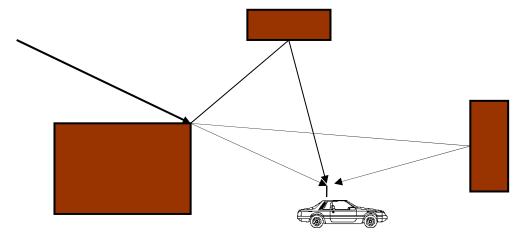
Soglia = -90 dBm

Outage prob. = 3.1%

Fading di Rice


- Le assunzioni del fading di Rayleigh non sono verificate quando esiste un cammino diretto e molti cammini riflessi
- In questo caso di solito si usa rappresentare l'ampiezza del segnale con una variabile casuale di Rice:

$$p(r) = \frac{r}{\sigma^2} e^{-\frac{r^2 + r_s^2}{2\sigma^2}} I_0 \left(\frac{rr_s}{\sigma^2}\right)$$


- in concreto il termine r_s^2 rappresenta la potenza del raggio diretto mentre σ^2 la potenza degli altri raggi
- I_0 funzione di Bessel di 1° tipo e ordine 0

• Il fattore
$$K = \frac{r_s}{\sigma^2}$$

- indica quanto la componente diretta domina le altre
- per K=0 ritroviamo la distribuzione di Rayleigh
- La figura mostra le distribuzioni con $\sigma^2 = 1$ al crescere di K

- Nella propagazione il segnale attraversa o viene riflesso e diffratto da ostacoli che assorbono parzialmente il segnale
- Questo genera ulteriore attenuazione che di solito viene identifica con il nome di shadowing
- Fading di lungo termine che cambia solo quando il movimento è tale da modificare il cammino di una componente del segnale

- Di solito tale attenuazione viene modellata mediante una variabile log-normale *x*,
- Quindi la potenza in dB (valor medio P_{dB}) ha un componente di attenuazione quindi $Z=\log(x)$ che è una variabile gaussiana con deviazione standard σ_{dB} che assume tipicamente valori compresi tra 0 e 12 dB

$$f_Z(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma_{dB}} e^{-(x - P_{dB})^2 / 2\sigma_{dB}^2}$$

- Probabilità di fuori servizio:
 - Occorre convertire la soglia per una distribuzione normale:

$$g = \frac{P_{dB} - \gamma}{\sqrt{2}\sigma_{dB}}$$

$$Prob = [1 - erf(g)]/2 = erfc(g)/2$$

Potenza media = -75 dBm

Soglia = -85 dBm

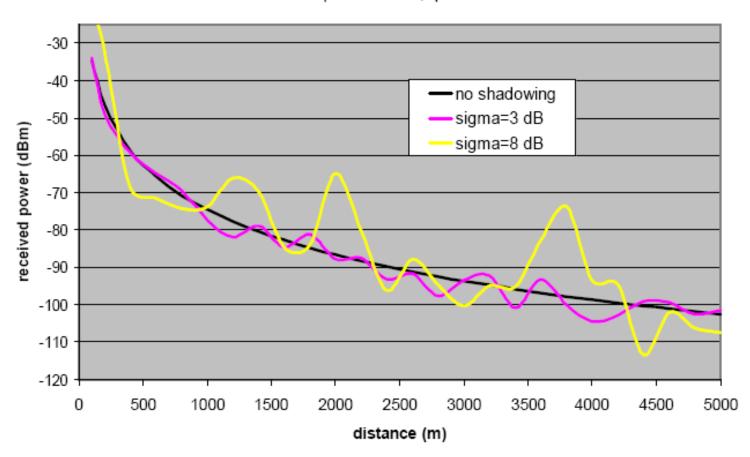
$$\sigma_{dB}$$
=6 dB

Outage prob. = 4.8%

Esempio 2:

Potenza media = -75 dBm

Erf(q)


(1-Erf(q))/2

Soglia = -90 dBm

$$\sigma_{dB}$$
=8 dB

Outage prob. = 3%

attenuation: η =4 after 100m; η =2 before 100m

Stima della copertura cellulare

Raggio di cella

- Come calcolare il raggio di copertura di una stazione radio base?
- Sembrerebbe molto semplice, dati:
 - P_T = potenza trasmessa (dBm)
 - P_{th} = potenza di soglia (dBm) Sensitività del ricevitore
 - $L_P = P_T P_{th}$ path loss massima
- si calcola il raggio dall'espressione di L_P in funzione della distanza usando:
 - Fattore di propagazione η : $L_P(d) = 10\eta \cdot \log_{10} \left(\frac{d_0}{d} \right)$
 - oppure Okumura-Hata

Esempio

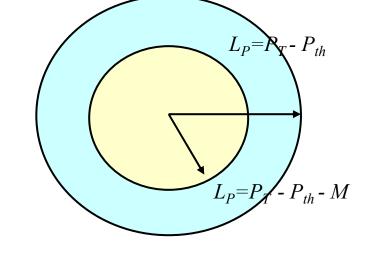
Dati:

- Potenza ricevuta a 10 m = 100 mW
- Potenza di soglia: P_{th} = -50 dBm
- $\eta = 3.7$

Si ha:

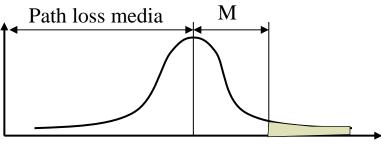
$$P_R(d_0)_{[dBm]} = P_R(10m)_{[dBm]} = 10\log_{10}(100) = 20$$

$$P_R(R)_{[dBm]} = P_R(d_0)_{[dBm]} - 10\eta \log_{10} \left(\frac{R}{d_0}\right) = P_{th}$$


$$20 - 37 \log_{10} \left(\frac{R}{10} \right) = -50 \rightarrow \log_{10} \left(\frac{R}{10} \right) = \frac{70}{37}$$

$$\to R = 10 \cdot 10^{\frac{70}{37}} = 780 \, m$$

La probabilità di fuori servizio a bordo cella risulterebbe però pari al 50%!


Margine di fading

- Il calcolo dell'esempio non tiene conto dello shadowing che causa deviazioni dal valore stimato dai modelli di attenuazione da distanza
- E' possibile tener conto dello shadowing riducento il raggio di cella per prendere unb margine di sicurezza sulle variazioni della potenza ricevuta

- Margine di fading
 - M = potenza a bordo cella Pdf path (dBm) – potenza soglia (dBm)

loss a bordo cella

Esempio (continua)

Dati:

- Potenza ricevuta a 10 m = 100 mW
- Potenza di soglia: P_{th} = -50 dBm
- $\eta = 3.7$
- Shadowing con σ_{dB} =4dB
- Margine di fading M=6 dB

Si ha:

$$P_{R}(R)_{[dBm]} = P_{R}(d_{0})_{[dBm]} - 10\eta \log_{10} \left(\frac{R}{d_{0}}\right) = P_{th} + M$$

$$20 - 37 \log_{10} \left(\frac{R}{10} \right) = -50 + 6 \rightarrow R = 10 \cdot 10^{\frac{64}{37}} = 537 m$$

Probabilità di fuori servizio

 Ricordiamo che lo shadowing ha un distribuzione lognormale che in dB è una gaussiana:

$$f_{P_{dB}(r)}(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma_{dB}} e^{-(x - \overline{P}_{dB}(r))^2 / 2\sigma_{dB}^2}$$

$$P_{dB}(r)$$
 = pot. a distanza r , $\overline{P}_{dB}(r)$ = valore medio

■ Il fuori servizio si presenta quando la potenza $< P_{th}$ (dB):

$$\Pr_{out}(r) = \int_{-\infty}^{P_{th}} f_{P_{dB}(r)}(x) dx = \frac{1}{2} \operatorname{erfc}\left(\frac{\overline{P}_{dB}(r) - P_{th}}{\sqrt{2}\sigma_{dB}}\right)$$

Probabilità di fuori servizio

Riscrivendo la potenza in funzione del suo valore a bordo cella (R) si ha:

$$\overline{P}_{dB}(r) = \overline{P}_{dB}(r) - 10\eta \log_{10} \frac{r}{R}$$

e dunque:

$$\Pr_{out}(r) = \frac{1}{2} \operatorname{erfc} \left(\frac{\overline{P}_{dB}(R) - P_{th} - 10\eta \log_{10} r / R}{\sqrt{2}\sigma_{dB}} \right) =$$

$$= \frac{1}{2} erfc \underbrace{\begin{pmatrix} M - 10\eta \log_{10} r / R \\ \sqrt{2}\sigma_{dB} \end{pmatrix}}^{2O_{dB}}$$
Ovviamente a bordo cella:
$$\Pr_{out}(R) = \frac{1}{2} erfc \underbrace{\begin{pmatrix} M \\ \sqrt{2}\sigma_{dB} \end{pmatrix}}^{N}$$

$$Pr_{out}(R) = \frac{1}{2} erfc \left(\frac{M}{\sqrt{2}\sigma_{dB}} \right)$$

Esempio (continua)

$$\overline{P}_{dB}(10 \text{ m}) = 20 \text{ dBm}$$

•
$$P_{th} = -50 \text{ dBm}$$

$$\eta = 3.7$$

$$\sigma_{dB}$$
=4dB

Quindi:

$$Pr_{out}(R) = 6.68\%$$

Si ricordi che :
$$\varphi(x) = \frac{1}{2} \left[1 + erf\left(\frac{x}{\sqrt{2}}\right) \right]$$
, dove $\varphi(x)$ è la CDF della normale

e quindi :
$$erfc(x) = 2[1 - \varphi(x\sqrt{2})]$$

Area di fuori servizio

 Per calcolare la probabilità di fuori servizio in un'area circolare di raggio R basta integrare:

$$\begin{aligned} & \Pr_{out}^{A}(R) = \frac{1}{\pi R_{2}} \int_{0}^{R} \Pr_{out}(r) 2\pi r dr = \\ & = \int_{0}^{R} \frac{r}{R} \operatorname{erfc} \left(\frac{M - 10\eta \log_{10} r / R}{\sqrt{2}\sigma_{dB}} \right) \frac{dr}{R} = \\ & = \int_{0}^{1} x \operatorname{erfc} \left(\frac{M - 10\eta \log_{10} x}{\sqrt{2}\sigma_{dB}} \right) dx = \\ & = \int_{0}^{1} x \operatorname{erfc} \left(\frac{\ln(m) - \eta \ln x}{\sqrt{2}\sigma} \right) dx \end{aligned} \qquad \begin{cases} \sigma = \frac{\sigma_{dB} \ln 10}{10} \\ m = 10^{M/10} = \frac{\overline{P}(R) \quad [mW]}{P_{th} \quad [mW]} \end{cases}$$

Area di fuori servizio

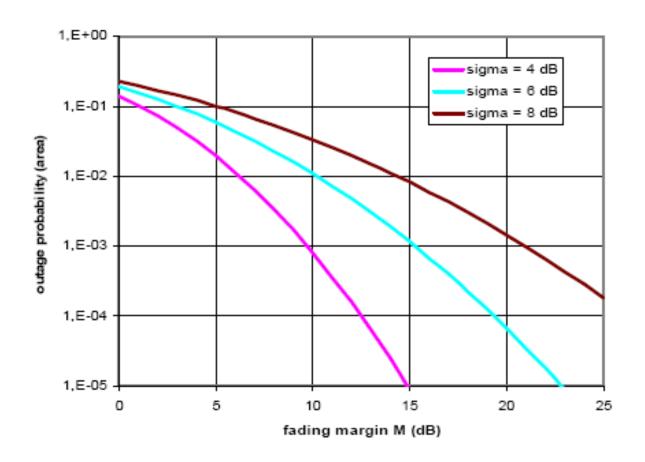
Definiamo:

$$Q_1 = \frac{\ln(m)}{\sqrt{2}\sigma}$$
 $Q_2 = \frac{\sqrt{2}\sigma}{\eta}$

$$\Pr_{out}^{A}(R) = \int_{0}^{1} x \operatorname{erfc}\left(Q_{1} - \frac{\ln x}{Q_{2}}\right) dx = \text{cambiando variabile } \theta = Q_{1} - \frac{\ln(x)}{Q_{2}}$$

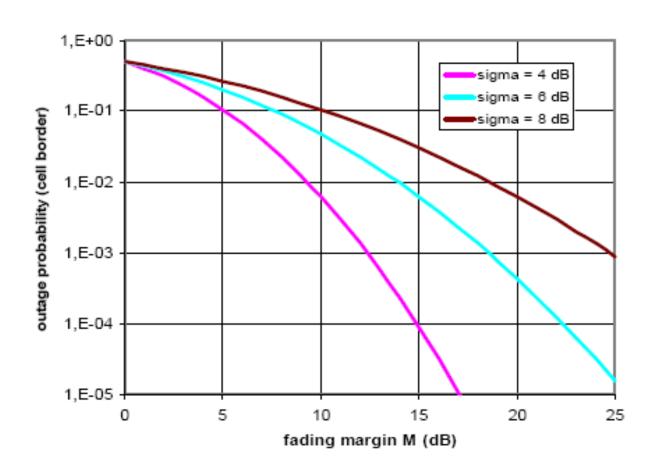
$$= Q_{2} \int_{Q_{1}}^{+\infty} e^{2Q_{2}(Q_{1} - \theta)} \operatorname{erfc}(\theta) d\theta =$$

$$= \left[-\frac{1}{2} e^{Q_{2}(2Q_{1} + Q_{2})} \operatorname{erfc}(\theta - Q_{2}) - \frac{1}{2} e^{2Q_{2}(Q_{1} - \theta)} \operatorname{erfc}(\theta)\right]_{Q_{1}}^{\infty} =$$


$$= \frac{1}{2} \operatorname{erfc}(x) - \frac{1}{2} e^{2Q_{2}Q_{1} - Q_{2}^{2}} \operatorname{erfc}(Q_{1} + Q_{2})$$

$$\stackrel{\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt}{D[\operatorname{erfc}(x)] = -\frac{2}{\sqrt{\pi}} e^{-t^{2}}}$$

$$\int \operatorname{erfc}(x) dx = x \cdot \operatorname{erfc}(x) - \frac{1}{\sqrt{\pi}} e^{-t^{2}}$$


Area di fuori servizio

- Rappresenta la frazione di area della cella "non coperta"
- Es.
 - **σ**=6
 - Target 1%
 - → M=10

Fuori servizio a bordo cella

- Es.
 - **σ**=6
 - Target 1%
 - → M=14

Calcolo del raggio di cella

Step 1

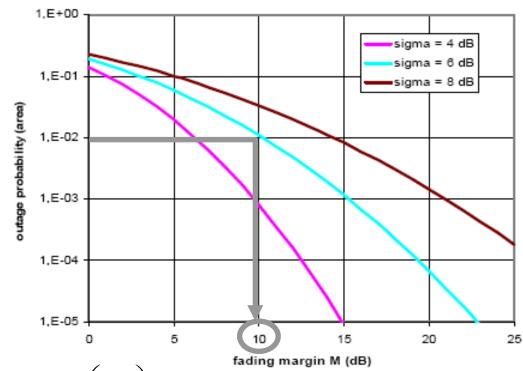
- Dalla prob. di outage target
 - a bordo cella
 - oppure su base area
- e dai valori di σ e η
- si calcola il margine M

Step 2

- Dalla potenza soglia P_{th}
- e dalla potenza trasmessa (o da quella ricevuta ad una distanza di riferimento)
- si calcola il raggio R

Calcolo del raggio di cella

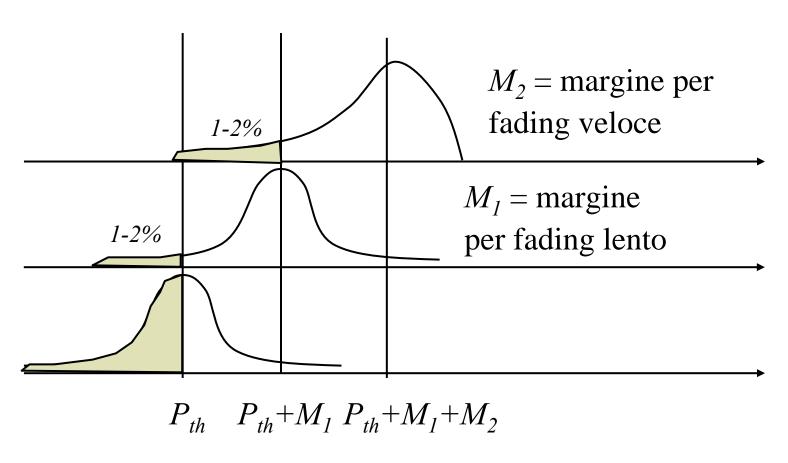
Esempio


$$\sigma = 6 \text{ dB}$$

$$\eta = 4$$

•
$$Pr_{out}(R) \le 0.01$$

$$\Rightarrow$$
 M = 10


- $P_R(100 \text{ m}) = 5 \text{ dBm}$
- $P_{th} = -70 \text{ dBm}$

$$P_R(R)_{[dBm]} = P_R(d_0)_{[dBm]} - 10\eta \log_{10} \left(\frac{R}{d_0}\right) = P_{th} + M$$

$$5 - 40\log_{10}\left(\frac{R}{100}\right) = -70 + 10 \rightarrow R = 100 \cdot 10^{\frac{65}{40}} = 4.217 \text{ km}$$

Fading lento e veloce

Appendice: Ripassino dei dB

- dB
 - scala logaritmica
 - potenze

$$P_{dB} = 10\log_{10} P$$

 $P = 10^{P_{dB}/10}$

$$P = 10^{P_{dB}/10}$$

Appendice: Ripassino dei dB

- al prodotto in scala lineare corrisponde la somma in dB
- al rapporto la differenza

$$A \cdot P \longrightarrow A_{dB} + P_{dB}$$

$$P/A \rightarrow P_{dB} - A_{dB}$$

Appendice: Ripassino dei dB

valori notevoli

$$2 \rightarrow 3dB$$

$$3 \rightarrow 4.77dB$$

$$4 = 2 \cdot 2 \rightarrow 3 + 3 = dB$$

$$5 \rightarrow 7dB$$

$$8 \rightarrow 9dB$$

$$9 \rightarrow 9.54dB$$

$$10 \rightarrow 10dB$$

$$100 \rightarrow 20dB$$

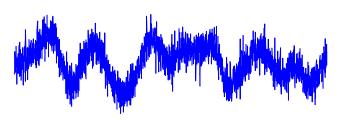
$$6 \rightarrow 7.77dB$$

$$1000 \rightarrow 30dB$$

Trasmissione su canale radio

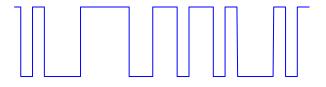
■ ATTENZIONE: Solo brevissimi cenni, argomento complesso, ci serve solo per capire le motivazioni dietro le scelte architetturali

si vedano i corsi di "Sistemi di comunicazione" e "Teoria dell'Informazione e Codici"


come riferimento sintetico all'argomento si usi il testo di H. Walke: "Mobile Radio Networks", cap. 2. par. 7

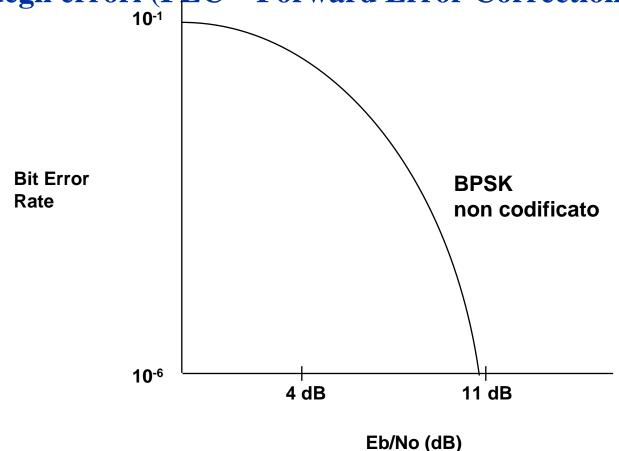
Analog Cellular

Transmitted Signal

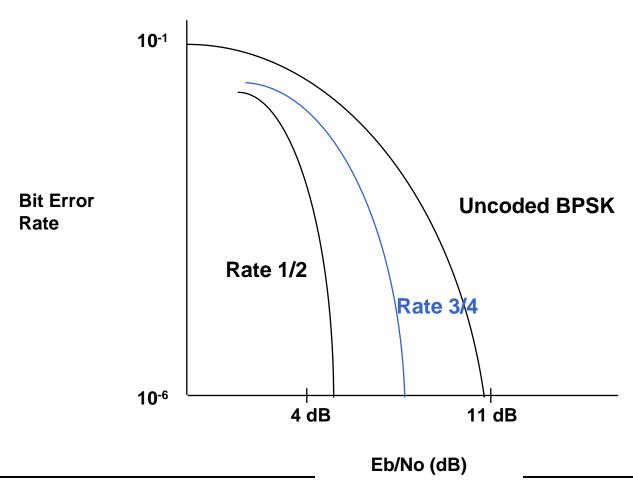


Received Signal + Noise

Digital Cellular


Transmitted Signal

Received Signal + Noise



 Quando il rapporto segnale rumore è basso è possibile migliorare il BER utilizzando dei codici di correzione degli errori (FEC – Forward Error Correction)

- I codici correttori consentono di correggere degli errori mediante l'aggiunta di bit di ridondanza
- Se su n bit trasmessi k sono di informazione e (n-k) di ridondanza si definisce il rate del codice come il rapporto k/n

Il codice migliora le prestazioni

- Tipi di codici:
 - Codici a blocco
 - Codici di Hamming
 - Codici BCH
 - Codici Reed-Solomon
 - Codici continui
 - Codici Convoluzionali
 - Codici Turbo

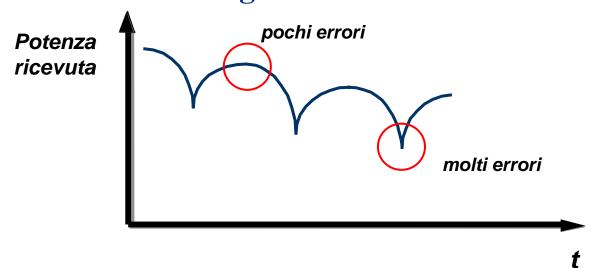
- I codici possono essere usati anche solo per rivelare la presenza di errori senza il potere di correggerli
- Quando ad esempio viene scoperta la presenza di errori in segmento di voce codificato è possibile eliminare il segmento dalla decodifica e interpolare il segnale degli altri campioni
- Quando il tipo di servizio e il sistema lo consente (di solito principalmente per servizi dati) è anche possibile usare tecniche di ritrasmissione (ARQ – Automatic repeat ReQuest)

- Nei sistemi cellulari la presenza di elevata interferenza e di fluttuazioni della potenza del segnale dovute alla propagazione ha spingo all'uso massiccio di metodi di controllo d'errore e di FEC in particolare
- L'uso di codici consente di ridurre il valore di SIR_{min} tollerato dalle trasmissioni
- ma al costo di aggiunta di ridondanza (l'uso di un codice con rate ½ dimezza la capacità)
- decidere se val la pena pagare il prezzo della ridondanza per abbassare il SIR_{min} è compito non facile e dipende da molto dalle caratteristiche del sistema e dal tipo di servizio
- è un fatto però che tali codici siano molto usati ...

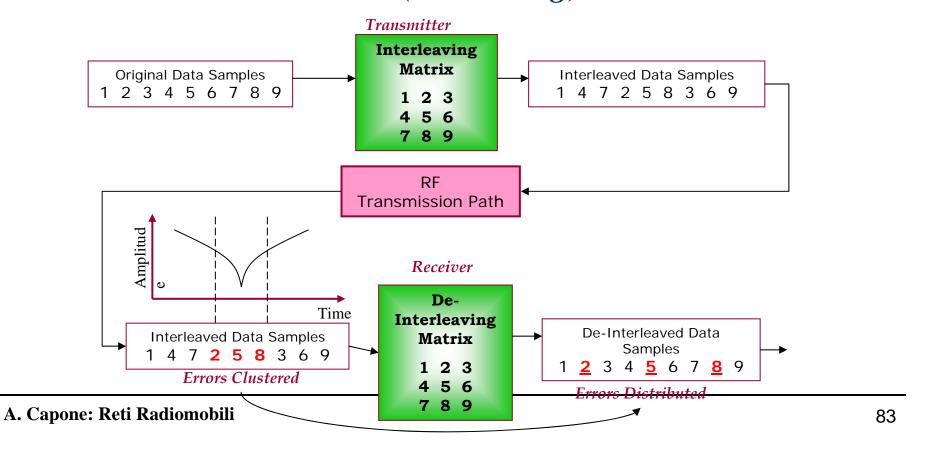
- Proviamo a ragionare con i conti fatti nel dimensionamento del riuso
- Se indichiamo con N il numero totale di canali disponibili e K le dimensioni del cluster il numero n di canali per cella è:

$$n_1 = \frac{N}{K} = \frac{3N}{(6 \cdot SIR_1)^{2/\eta}}$$

Nel caso di codifica FEC a rate R si ha:

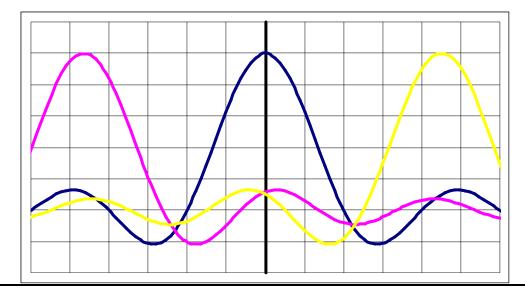

$$n_2 = \frac{N \cdot R}{K} = \frac{3N \cdot R}{\left(6 \cdot SIR_2\right)^{2/\eta}}$$

• Affinchè n_2 sia maggiore di n_1 occorre che:


$$n_1 \le n_2 \implies SIR_2 \le R^{\eta/2} \cdot SIR_1$$

- Il margine sul SIR dipende dall'efficienza del codice e dalla statistica degli errori
- **E'** per questo che si tenta di fare codici sempre più potenti (ad es. codici Turbo)

- In realtà le prestazioni dei codici dipendono anche dalla statistica degli errori
- Le curve ideali dei codici assumono rumore gaussiano bianco (che genera errori indipendenti – canale senza memoria)
- Il canale radio nei sistemi cellulari tende a generare errori correlati (canale con memoria) a causa delle fluttuazioni del segnale e dell'interferenza



- L'efficienza della maggior parte dei codici diminuisce velocemente con errori correlati
- Per questo vengono spesso usati dei meccanismi che mischiano i bit in trasmissione dopo la codifica e li riordinano in ricezione (interleaving)

Delay spread

- La propagazione per cammini multipli può provocare altri più complessi problemi nel caso di trasmissione digitale
- In questo caso, infatti, i diversi ritardi delle repliche del segnale trasmesso (<u>delay spread</u>) provocano un allargamento della risposta all'impulso del canale che può portare a interferenza intersimbolica (ISI – Inter-Symbol Interference)

Delay spread

La rilevanza del delay spread può essere quantificata calcolando il suo valore quadratico medio (RMS Delay **Spread**):

$$\tau_{RMS} = \sqrt{\frac{1}{\sum_{i=1}^{n} P_i} \sum_{i=1}^{n} \left(\tau_i^2 P_i\right) - \tau_d^2}$$

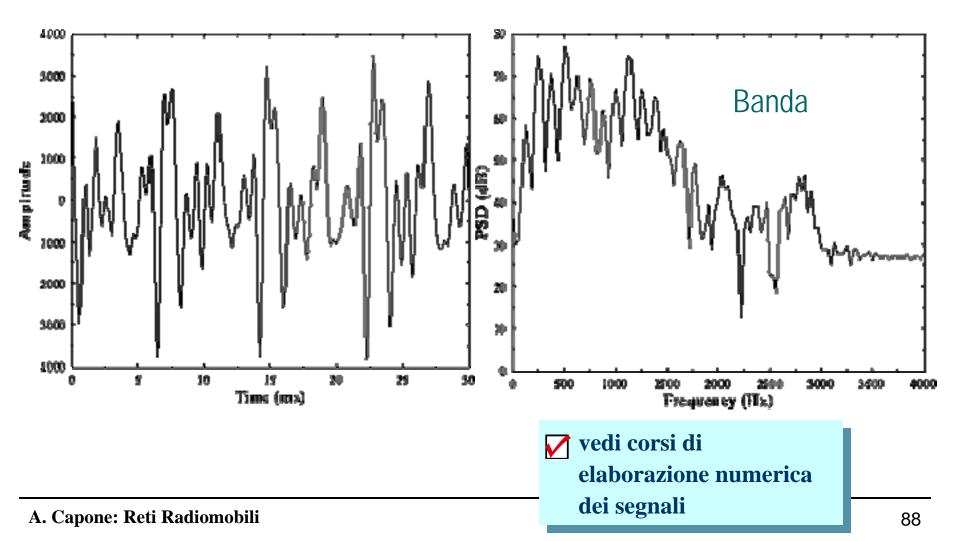
con

$$\tau_d = \frac{\sum_{i=1}^{n} (\tau_i P_i)}{\sum_{i=1}^{n} P_i}$$

$$\tau_{RMS}$$

$$\tau_{RMS}$$
RMS delay spread ritardo del path i potenza ricevuta p

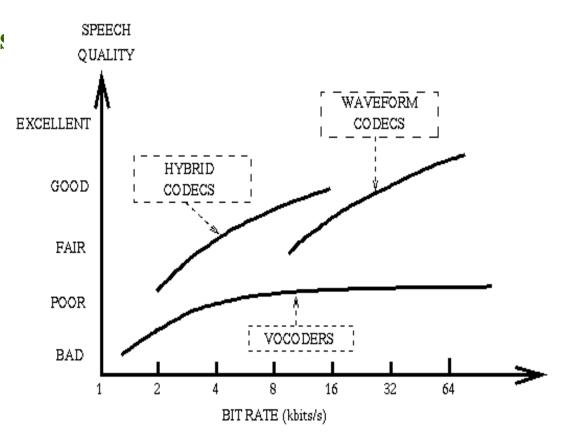
RMS delay spread potenza ricevuta path i numero di path


Delay spread

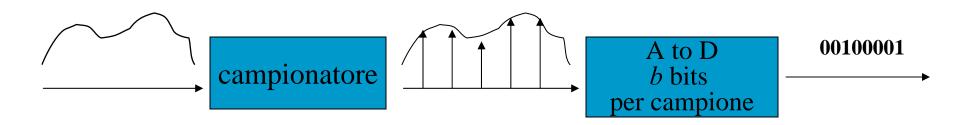
- L'inverso del delay spread fornisce la <u>banda di coerenza</u>
- Se la banda di coerenza è molto maggiore della banda del segnale il delay spread non pone problemi
- Se al contrario la banda di coerenza è comparabile con quella del segnale il delay spread provoca interferenze intersimbolica non trascurabile e errori in ricezione
- In questo caso per ovviare alla <u>distorsione in frequenza</u> del canale occorre <u>equalizzare</u> con un opportuno filtro addattativo in ricezione
- Le tecniche di equalizzazione di solito si basano su una stima del canale effettuata su sequenze di simboli noti (vedi GSM), ma possono anche essere fatte senza tali simboli (blind equalization)

Codifica della voce

Codifica della voce: Caratteristiche tempo/frequenza


suono vocalizzato

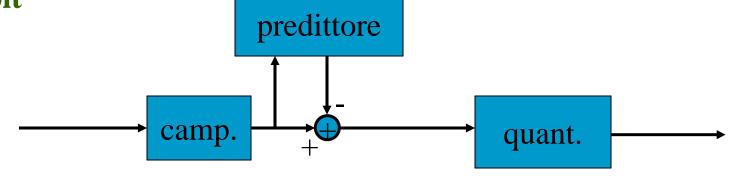
Codifica della voce: Codificatori vocali


Trasformano la voce in un flusso di bit

- Waveform codecs
- Source codecs (vocoders)
- Hybrid codecs

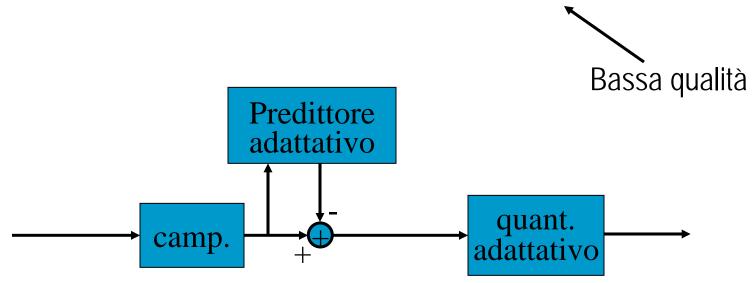
Codifica della voce: Waveform codecs

- nessuna conoscenza a priori di come il segnale è stato generato
- informazione necessaria:
 - banda del segnale B (telefonia classica < 4 KHz)
 - massimo rumore di quantizzazione tollerabile

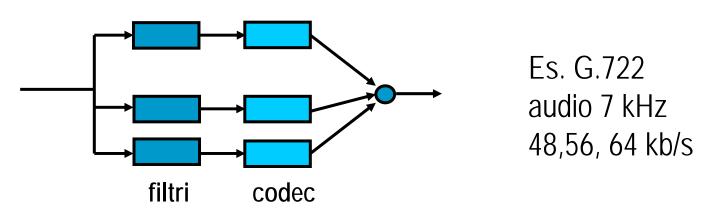

alta qualita', bassa complessita', basso ritardo (1 campione), robustezza agli errori e al rumore di fondo

Codifica della voce: Pulse Code Modulation (PCM)

- standardizzato da ITU nel 1960: G.711
- si assume B=4 kHz, e la frequenza di campionamento Bc=8 kHz, 8 bit/campione, 64 kb/s
- due differenti regole di quantizzazione (logaritmica)
 - per America (μ-law) e
 - Europa (A-law)
 - regole di conversione standard


Codifica della voce: Differential PCM (DPCM)

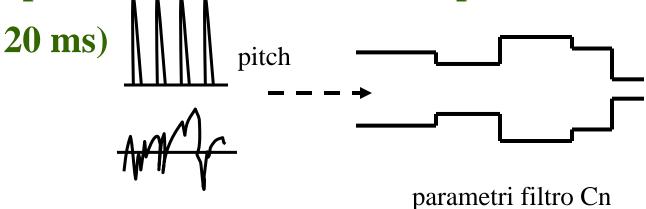
- i campioni vocali successivi presentano della correlazione
- è possibile utilizzare metodi di predizione per valutare il campione successivo noti i precedenti
- si trasmette solo la differenza tra valore predetto e valore reale
- a causa della correlazione la varianza della differenza è minore ed è possibile codificarla con un minor numero di bit



Codifica della voce: Adaptive DPCM (ADPCM)

- le prestazioni migliorano se predittore e quantizzatore sono adattativi
- standardizzato nel 1980 da ITU ADPCM a 32 kbit/s: G.721
- successivamente ADPCM a 40, 32, 24, 16 kbit/s: G.726 e G.727

Codifica della voce: **Sub Band Coding (SBC)**

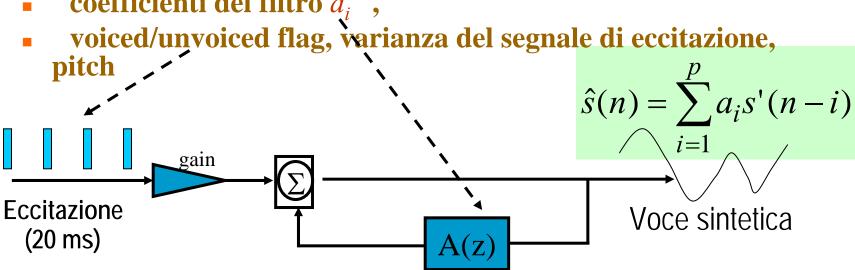

- il segnale vocale in ingresso suddiviso in sotto-bande mediante filtri
- il segnale di ogni sotto-banda viene codificato indipendentemente con tecniche tipo ADPCM
- il vantaggio nasce dalla differente codifica delle sotto-bande riservando meno bit per quelle che l'orecchio umano percepisce meno (tollera più rumore di quantizzazione)

Codifica della voce: Source codecs (vocoders)

- Si basano su modelli di generazione della voce umana
- i modelli permettono di "togliere la ridondanza" da segmenti vocali fino a un'informazione base sufficiente a riprodurre la voce
- elevata complessità
- ritardi mediamente elevati
- sensibili a errori, rumore di fondo e suoni non umani

Codifica della voce: Modello della voce umana (fonema)

- filtro riverberante a parametri discreti
- segnale in ingresso (treno di impulsi o rumore bianco)
 - parametri del filtro variati periodicamente (10-



Codifica della voce: Vocoder lineari (LPC)

Utilizzano il modello della voce basato sul filtro lineare a parametri discreti

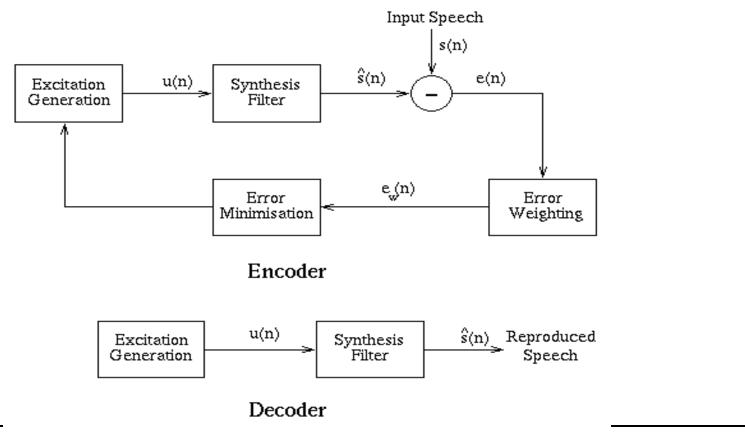
ad intervalli regolari (10-20 ms) vengono stimati e trasmessi i parametri del modello

coefficienti del filtro a_i ,

La stima è effettuata minimizzando la varianza dell'errore

$$e(n) = \hat{s}(n) - s(n)$$

Codifica della voce: Vocoder lineari (LPC)


- in decodifica un sintetizzatore utilizza i parametri ricevuti per riprodurre il segnale
- ritardi elevati: segmentazione, analisi, sintesi
- qualità: intelligibile ma non naturale (limiti modello + problemi con rumori di fondo)
- bit rate basso: < 2.4 kbit/s</p>

Codifica della voce: Modelli di eccitazione

- Eccitazione classica LPC ad due stati (es. LPC-10)
 - gain, pitch, flag voice/unvoiced
- Eccitazione mista
 - eccitazione periodica e pseudo-random insieme
 - 2 filtri di sintesi (freq. Basse » ecc. periodica, freq. Alte » ecc. pseudo random)
- Eccitazione residuale
 - eccitazione ideale: e(n)
 - codifica a basso bit-rate di e(n)
 - non e' più un vero vocoder ... verso codificatori ibridi

Codifica della voce: Hybrid codecs

- Cercano di colmare il vuoto tra vocoder e waveform codec
- i più diffusi usano le stesse tecniche dei vocoder (LPC), ma ottimizzano alcuni parametri (segnale di eccitazione) minimizzando il segnale errore

Codifica della voce: Hybrid codecs

- Multipulse-Excited Linear Prediction (MPLP), 1982
 - impulsi non uniformi di ampiezze variabili
 - posizione e ampiezza di ciascun impulso sono determinate con procedura iterativa che minimizza una funzione dell'errore
 - es. MPLP 9.6 kbit/s di BTI per servizio Skyphone
- Regolar Pulse Excitation (RPE)
 - sequenza di impulsi equispaziati
 - parametri: posiz. Primo impulso e periodo
 - es. LPT-RPE GSM 13 kbit/s

Codifica della voce: Hybrid codecs

- Code Excited Linear Prediction (CELP)
 - la sequenza di eccitazione viene scelta tra un insieme di sequenze (code-book)
 - le sequenze nel code-book sono realizzazioni di processi gaussiani
 - problema: lunghi ritardi dovuti alla ricerca della sequenza ottima nel code-book
 - semplificazione dell'algoritmo mediante metodi efficienti di ricerca e modifica del code-book

G.728 low delay CELP codec 16 kbit/s

G.729 CS-ACELP codec 8 kbit/s

G.723.1 ACELP 5.3 kbit/s

Codifica della voce: Principali Codifiche

Compressione	Year	Bit rate (kbit/s)	Frame size (ms)	Look ahead (ms)
G.711 PCM	1972	64	0.125	0
G.726 ADPCM	1990	32	1	0
G.722 Subband ADPCM	1988	48-64	0.125	1.5
G.728 LD-CELP	1992-94	16	0.625	0
G.729 CS-ACELP	1995	8	10	5
G.723.1 MP-MLQ	1995	6.3	30	7.5
G.723.1 ACELP	1996	5.3	30	5
RPE-LTP (GSM)	1987	13	20	0